Microsoft: Building Scale Indoor VR 3D Maps & Simulation of Disaster Situations

“It is useful to simulate disaster situations by reconstructing actual buildings in a virtual space to enable people using the buildings to learn how to act in a disaster situation before it occurs. Therefore, we are developing a disaster-simulation system that simulates various disaster situations by virtually reproducing the situation inside buildings to allow individuals to experience disaster situations by using the latest virtual reality (VR) system. We use a mobile robot equipped with a laser-range sensor that measures the distance to objects in a building, an RGB depth camera to collect distance and image data while the robot automatically travels along a route suitable for 3D measurement, and a 4K panoramic image camera that captures high-quality color data. The robot can also scan physical objects individually by moving around it automatically. We then arrange the objects in a 3D map and manipulate them. We have also developed a VR system called “Building-Scale VR” that consists of indoor 3D maps filled with manipulable virtual objects that we call “operation targets” and a VR headset capable of position tracking within the building. In this talk, we explain how to implement Building-Scale VR and its applications to disaster simulations. It is useful to express disaster situations by reconstructing actual buildings into virtual space and enable users in the building to experience such situations beforehand to learn how to properly act during a disaster. “

NASA: Flight Through the Orion Nebula in Visible and Infrared Light

“This visualization explores the Orion Nebula using both visible and infrared light. The sequence begins with a wide-field view of the sky showing the plane of our Milky Way Galaxy, then zooms down to the scale of the Orion Nebula. The visible light observation (from the Hubble Space Telescope) and the infrared light observation (from the Spitzer Space Telescope) are compared first in two-dimensional images, and then in three-dimensional models. As the camera flies into the star-forming region, the sequence cross-fades back and forth between the visible and infrared views. The glowing gaseous landscape has been illuminated and carved by the high energy radiation and strong stellar winds from the massive hot stars in the central cluster. The infrared observations generally show cooler temperature gas at a deeper layer of the nebula that extends well beyond the visible image. In addition, the infrared showcases many faint stars that shine primarily at longer wavelengths. The higher resolution visible observations show finer details including the wispy bow shocks and tadpole-shaped proplyds. In this manner, the movie illustrates the contrasting features uncovered by multi-wavelength astronomy. Credit: NASA, ESA, and F. Summers, G. Bacon, Z. Levay, J. DePasquale, L. Hustak, L. Frattare, M. Robberto (STScI), R. Hurt (Caltech/IPAC), M. Kornmesser (ESA), A. Fujii Acknowledgement: R. Gendler Music: “Dvorak – Serenade for Strings Op22 in E Major larghetto”, performed by The Advent Chamber Orchestra, CC BY-SA”